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Identification of influential spreaders in
complex networks
Maksim Kitsak1,2, Lazaros K. Gallos3, Shlomo Havlin4, Fredrik Liljeros5, Lev Muchnik6,
H. Eugene Stanley1 and Hernán A. Makse3*
Networks portray a multitude of interactions through which
people meet, ideas are spread and infectious diseases propa-
gate within a society1–5. Identifying the most efficient ‘spread-
ers’ in a network is an important step towards optimizing the
use of available resources and ensuring the more efficient
spread of information. Here we show that, in contrast to com-
mon belief, there are plausible circumstances where the best
spreaders do not correspond to the most highly connected or
the most central people6–10. Instead, we find that the most effi-
cient spreaders are those locatedwithin the core of the network
as identified by the k-shell decomposition analysis11–13, and
that when multiple spreaders are considered simultaneously
the distance between them becomes the crucial parameter that
determines the extent of the spreading. Furthermore, we show
that infections persist in the high-k shells of the network in
the case where recovered individuals do not develop immunity.
Our analysis should provide a route for an optimal design of
efficient dissemination strategies.

Spreading is a ubiquitous process, which describes many
important activities in society2–5. The knowledge of the spreading
pathways through the network of social interactions is crucial for
developing efficient methods to either hinder spreading in the
case of diseases, or accelerate spreading in the case of information
dissemination. Indeed, people are connected according to the way
they interact with one another in society and the large heterogeneity
of the resulting network greatly determines the efficiency and
speed of spreading. In the case of networks with a broad degree
distribution (number of links per node)6, it is believed that the
most connected people (hubs) are the key players, being responsible
for the largest scale of the spreading process6–8. Furthermore, in
the context of social network theory, the importance of a node
for spreading is often associated with the betweenness centrality,
a measure of how many shortest paths cross through this node,
which is believed to determine who has more ‘interpersonal
influence’ on others9,10.

Here we argue that the topology of the network organization
plays an important role such that there are plausible circumstances
underwhich the highly connected nodes or the highest-betweenness
nodes have little effect on the range of a given spreading
process. For example, if a hub exists at the end of a branch
at the periphery of a network, it will have a minimal impact
in the spreading process through the core of the network,
whereas a less connected person who is strategically placed in
the core of the network will have a significant effect that leads
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to dissemination through a large fraction of the population.
To identify the core and the periphery of the network we
use the k-shell (also called k-core) decomposition of the
network11–14. Examining this quantity in a number of real
networks enables us to identify the best individual spreaders
in the network when the spreading originates in a single node.
For the case of a spreading process originating in many nodes
simultaneously, we show that we can further improve the efficiency
by considering spreading origins located at a determined distance
from one another.

We study real-world complex networks that represent archetyp-
ical examples of social structures. We investigate (1) the friend-
ship network between 3.4million members of the LiveJournal.com
community15, (2) the network of email contacts in the Computer
Science Department of University College London (Zhou, S., pri-
vate communication), (3) the contact network of inpatients (CNI)
collected from hospitals in Sweden16 and (4) the network of actors
who have costarred in movies labelled by imdb.com as adult17 (see
Supplementary Section SI for details).

To study the spreading process we apply the susceptible–
infectious–recovered (SIR) and susceptible–infectious–susceptible
(SIS) models2,3,18 on the above networks (see Methods). These
models have been used to describe disease spreading as well
as information and rumour spreading in social processes where
an actor constantly needs to be reminded19. We denote the
probability that an infectious node will infect a susceptible
neighbour as �. In our study we use relatively small values
for �, so that the infected percentage of the population re-
mains small. In the case of large � values, where spread-
ing can reach a large fraction of the population, the role
of individual nodes is no longer important and spreading
would cover almost all the network, independently of where it
originated from.

The location of a node is defined using the k-shell decomposition
analysis11–13. This process assigns an integer index or coreness,
kS, to each node, representing its location according to successive
layers (k shells) in the network. The kS index is a quite robust
measure and the node ranking is not influenced significantly in
the case of incomplete information. (For details see Supplementary
Fig. S6 in Section SII. Small values of kS define the periphery
of the network and the innermost network core corresponds to
large kS (see Fig. 1a and Supplementary Section SII.) Figure 1b–d
illustrates the fact that the size of the population infected in a
spreading process (shown in this example in the CNI network)
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Figure 1 |When the hubs may not be good spreaders. a, A schematic representation of a network under the k-shell decomposition. The two nodes of
degree k=8 (blue and yellow nodes) in this network are in different locations: one lies at the periphery (kS = 1) whereas the other hub is in the innermost
core of the network, that is, it has the largest kS (kS = 3). b–d, The extent of the efficiency of the spreading process cannot be accurately predicted on the
basis of a measure of the immediate neighbourhood of the node, such as the degree k. For the contact network of inpatients (CNI), we compare infections
originating from single nodes with the same degree k=96 (nodes A and B) or the same index kS =63 (nodes A and C), with infection probability
� =0.035. In the corresponding plots, the colours indicate the probability that a node will be infected when spreading starts in the corresponding origin, as
long as this probability is higher than 25%. The results are based on 10,000 different realizations for each case. In the first case, where origin A has kS =63,
spreading reaches a much wider area more frequently, in contrast to origin B (kS = 26), where the infection remains largely localized in the immediate
neighbourhood of B. Spreading is very similar between origins A and C, which have the same kS value, although the degree of C is much smaller than A. The
importance of the network organization is also highlighted when we randomly rewire the network (preserving the same degree for all nodes). In this case
the standard picture is recovered: the extent of spreading coincides and both hubs contribute equally well to spreading (see Supplementary Section SVI).

is not necessarily related to the degree of the node, k, where the
spreading started. Spreading may be very different even when it
starts from hubs of similar degrees as comparatively shown in
Fig. 1b and c. Instead, the location of the spreading origin given
by its kS index predicts more accurately the size of the infected
population. For instance, Fig. 1b and d show that nodes in the
same kS layer produce similar spreading areas even if they have
different k (by definition, in a given layer there could be many
nodes with k ⇤ kS).

The above example suggests that the position of the node
relative to the organization of the network determines its spreading
influence more than a local property of a node, such as the degree
k. To quantify the influence of a given node i in an SIR spreading
process we study the average size of the population Mi infected
in an epidemic originating at node i with a given (kS,k). The

infected population is averaged over all the origins with the same
(kS,k) values:

M (kS,k)=
X

i⌥⌃(kS,k)

Mi

N (kS,k)

where⌃(kS,k) is the union of allN (kS,k) nodeswith (kS,k) values.
The analysis of M (kS,k) in the studied social networks reveals

three general results (see Fig. 2): (1) For a fixed degree, there is a
wide spread of M (kS,k) values. In particular, there are many hubs
located at the periphery of the network (large k, low kS) that are poor
spreaders. (2) For a fixed kS,M (kS,k) is approximately independent
of the degree of the nodes. This result is revealed in the vertically
layered structure ofM (kS,k), suggesting that infected nodes located
in the same k shell produce similar epidemic outbreaks M (kS,k)
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Figure 2 | The k-shell index predicts the outcome of spreading more reliably than the degree k or the betweenness centrality CB. The networks used are
(top to bottom) email contacts (� =8%), the CNI network (� =4%), the actor network (� = 1%) and the LiveJournal.com friendship network (� = 1.5%).
a,c,e,g, Average infected size of the populationM(kS,k) when spreading originates in nodes with (kS,k). b,d,f,h, The infected sizeM(kS,CB) when spreading
originates in nodes of a given combination of kS and CB. In both cases, spreading is larger for nodes of higher kS, whereas nodes of a given k or CB value can
result in either small or large spreading, depending on the value of kS. (There is an exception at large kS and small k of the LiveJournal database, which is
due to artificial closed groups of virtual characters that connect with one another for the purpose of online gaming and do not correspond to regular users,
as the rest of the database.)

independent of the value of k of the infection origin. (3) The most
efficient spreaders are located in the inner core of the network
(large kS region), fairly independently of their degree. These results
indicate that the k-shell index of a node is a better predictor of
spreading influence. When an outbreak starts in the core of the
network (large kS) there exist many pathways through which a virus

can infect the rest of the network; this result is valid regardless of the
node degree. The existence of these pathways implies that, during
a typical epidemic outbreak from a random origin, nodes located
in high-kS layers are more likely to be infected and they will be
infected earlier than other nodes (see Supplementary Section SIII).
The neighbourhood of these nodes makes them more efficient
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Figure 3 | k-shell structure of the CNI network. a, The imprecision functions ⇥kS (p), ⇥k(p) and ⇥CB (p), for � =4%. Even though both k-shell and k
identification strategies yield comparable results for p= 2%, the k-shell strategy is consistently more accurate for 2%< p< 10%, with ⇥kS approximately
half ⇥k . The CB identification of the most efficient spreaders is the least accurate, with ⇥CB exceeding 40%. b, We visualize the CNI network as a set of
concentric circles of nodes representing inpatients, each circle corresponding to a particular k shell. The kS indices of a given layer increase as we move
from the periphery to the centre of the network28,29. Node size is proportional to the logarithm of the degree of the node. We highlight the 25 inpatients
with the largest degree values. Note that inpatients with high k values are not concentrated at the ‘centre’ of the network but instead are scattered
throughout different k shells. We highlight the position of the three nodes, A, B and C, of the origins that were used in the example of Fig. 1. c, Scatter plot of
the node degree k as a function of kS for all the nodes in the CNI network (black symbols) and the degree-preserving randomized version of the same
network (red symbols). Note that there are many inpatients with large k and low kS values in the original network, whereas in the randomized email
network all the hubs are located in the inner core of the network. We also show the positions of the three origins used in Fig. 1. d, When spreading starts
from multiple origins, the set of nodes with highest degree (blue continuous line) can spread significantly more than the set of highest-kS nodes (red
continuous line), because in the latter case most of these nodes are connected to one another. If we only consider in this set nodes that are not directly
linked, then both the sets of highest-k or kS nodes yield a similar result (dashed lines), where spreading is significantly enhanced. Results are shown for
� = 3% in the CNI.

in sustaining an infection in the early stages, thus enabling the
epidemic to reach a critical mass such that it can fully develop.
Similar results on the efficiency of high-kS nodes are obtained from
the analysis of M (kS,CB) in Fig. 2, where CB is the betweenness
centrality of a node in the network9,10: the value of CB is not a good
predictor for spreading efficiency.

To quantify the importance of kS in spreading we calculate the
‘imprecision functions’ ⇥kS (p), ⇥k(p) and ⇥CB (p). These functions
estimate for each of the three indicators kS, k and CB how close to
the optimal spreading is the average spreading of the pN (0<p<1)
chosen origins in each case (see Methods and Supplementary
Section SIV). The strategy to predict the spreading efficiency of a
node based on kS is consistently more accurate than amethod based
on k in the studied p range (Fig. 3a). The CB-based strategy gives
poor results compared with the other two strategies.

Our finding is not specific to the social networks shown in Fig. 2.
In Supplementary Section SV we analyse the spreading efficiency in
other networks not social in origin, such as the Internet at the router
level20, with similar conclusions. The key insight of our finding is
that in the studied networks a large number of hubs are located in
the peripheral low-kS layers (Fig. 3b shows the location of the 25
largest hubs in the CNI; see also Supplementary Section SV) and
therefore contribute poorly to spreading. The existence of hubs in
the periphery is a consequence of the rich topological structure of

real networks. In contrast, in a fully random network obtained by
randomly rewiring a real network preserving the degree of each
node (such a random network corresponds to the configuration
model21; see Supplementary Section SVI) all the hubs are placed
in the core of the network (see the red scatter plot in Fig. 3c) and
they contribute equally well to spreading. In such a randomized
structure the same information is contained in the k shell as in the
degree classification because there is a one-to-one relation between
the two quantities, which is approximately linear, kS ⇧ k (Fig. 3c
and Supplementary Fig. S13). Examples of real networks that are
similar to a random structure are the network of product space
of economic goods22 and the Internet at the AS level (analysed in
Supplementary Section SV).

Our study highlights the importance of the relative location of
a single spreading origin. Next, we address the question of the
extent of an epidemic that starts at multiple origins simultaneously.
Figure 3d shows the extent of SIR spreading in the CNI network
when the outbreak simultaneously starts from the n nodes with
the highest degree k or the highest kS index. Even though the
high-kS nodes are the best single spreaders, in the case of multiple
spreading the nodes with highest degree are more efficient than
those with highest kS. This result is attributed to the overlap of
the infected areas of the different spreaders: large-kS nodes tend
to be clustered close to one another, whereas hubs can be more
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Figure 4 | SIS spreading in the CNI network and � dependence for SIS and SIR. a,b, Virus persistence ⌅(kS,k) as a function of k and kS values of inpatients
in the CNI network for � = 2% and � =4%, respectively, where 20% of the individuals are initially infected. The infection survives mainly in nodes with
large kS values. c, We form four groups of nodes of the CNI network on the basis of their k-shell values. For all values of � , the average virus persistence ⌅ is
consistently higher in the inner k shells. d, Influence of the infection probability � on the spreading efficiency of nodes, grouped according to their k-shell
values, for SIR spreading. The solid black line refers to the average infected percentage over all network nodes. Nodes in higher-k shells are consistently the
most efficient, independently of the � value.

spread in the network and, in particular, they need not be connected
with one another. Clearly, the step-like features in the plot of
highest-kS nodes (red solid curve in Fig. 3d) suggest that the infected
percentage remains constant as long as the infected nodes belong
in the same k shell. Including just one node from a different
k shell results in a significantly increased spreading. This result
suggests that a better spreading strategy using n spreaders is to
choose either the highest-k or kS nodes with the requirement that
no two of the n spreaders are directly linked to each other. This
scheme then provides the largest infected area of the network, as
shown in Fig. 3d.

Many contagious infections, includingmost sexually transmitted
infections23, do not confer full immunity after infection as assumed
in the SIR model, and therefore are suitably described by the
SIS epidemic model, where an infectious node returns to the
susceptible state with probability ⇤. In an SIS epidemic the number
of infectious nodes eventually reaches a dynamic-equilibrium
‘endemic’ state, where as many infectious individuals become
susceptible as susceptible nodes become infectious18. In contrast
to SIR, in the initial state of our SIS simulations 20% of the
network nodes are already infected. The spreading efficiency of
a given node i in SIS spreading is the persistence, ⌅i(t ), defined
as the probability that node i is infected at time t (ref. 7). In
an endemic SIS state, ⌅i(t ⌅ ⌃) becomes independent of t (see
Supplementary Section SVII). Previous studies have shown that
the largest persistence ⌅i(t ⌅ ⌃) is found in the network hubs,
which are re-infected frequently owing to the large number of
neighbours7,24,25. However, we find that this result holds only in
randomized network structures. In the real network topologies
studied here, we find that viruses persist mainly in high-kS layers
instead, almost irrespectively of the degree of the nodes in the core.

In the case of randomnetworks, it is found that viruses propagate
to the entire network above an epidemic threshold given by
� >�c

rand⇥⇤ k⌦/ k2⌦ (refs 24,26). In real networks, such as theCNI
network, the threshold �c is different from �c

rand. Furthermore, in
real networks, we find that viruses can survive locally even when
� < �c, but only within the high-kS layers of the network, whereas
virus persistence in peripheral kS layers is negligible (Fig. 4a–c). As
the k-shell structure depends on the network assortativity, the lower
threshold is in agreement with the observation that high positive
assortativity27 may decrease the epidemic threshold.

The importance of high-kS nodes in SIS spreading is confirmed
when we analyse the asymptotic probability that nodes of given
(kS,k) values will be infected. This probability is quantified by the
persistence function

⌅(kS,k)⇥
X

i⌥⌃(kS,k)

⌅i(t ⌅⌃)
N (kS,k)

as a function of (kS,k) at different � values (Fig. 4a and b). High-kS
layers in networks might be closely related to the concept of a core
group in sexually transmitted infection research23. The core groups
are defined as subgroups in the general population characterized by
high partner turnover rate and extensive intergroup interaction23.

Similar to the core group, the dense subnetwork formedby nodes
in the innermost k shells helps the virus to consistently survive
locally in the inner-core area and infect other nodes adjacent to
the area. These k shells preserve the existence of a virus, in contrast
to, for example, isolated hubs at the periphery. Note that a virus
cannot survive in the degree-preserving randomized version of the
CNI network, owing to the absence of high-k shells.
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The importance of the inner-core nodes in spreading is not
influenced by the infection probability values, �. In both models,
SIS and SIR, we find that the persistence ⌅ or the average infected
fraction M , respectively, is systematically larger for nodes in inner
k shells compared with nodes in outer k shells, over the entire �
range that we studied (Fig. 4c,d). Thus, the k-shell measure is a
robust indicator for the spreading efficiency of a node.

Finding the most accurate ranking of individual nodes for
spreading in a population can influence the success of dissemination
strategies. When spreading starts from a single node the kS value is
enough for this ranking, whereas in the case of many simultaneous
origins spreading is greatly enhanced when we additionally repel
the spreaders with large degree or kS. In the case of infections
that do not confer immunity on recovered individuals, the core
of the network in the large-kS layers forms a reservoir where
infection can survive locally.

Methods
The k-shell decomposition. Nodes are assigned to k shells according to their
remaining degree, which is obtained by successive pruning of nodes with degree
smaller than the kS value of the current layer. We start by removing all nodes with
degree k = 1. After removing all the nodes with k = 1, some nodes may be left with
one link, so we continue pruning the system iteratively until there is no node left
with k = 1 in the network. The removed nodes, along with the corresponding links,
form a k shell with index kS = 1. In a similar fashion, we iteratively remove the next
k shell, kS = 2, and continue removing higher-k shells until all nodes are removed.
As a result, each node is associated with one kS index, and the network can be
viewed as the union of all k shells. The resulting classification of a node can be very
different than when the degree k is used.

The spreading models. To study the spreading process we apply the SIR and SIS
models. In the SIR model, all nodes are initially in the susceptible state (S) except
for one node in the infectious state (I). At each time step, the I nodes infect their
susceptible neighbours with probability � and then enter the recovered state (R),
where they become immunized and cannot be infected again. The SIS model
aims to describe spreading processes that do not confer immunity on recovered
individuals: infected individuals still infect their neighbours with probability �
but they return to the susceptible state with probability ⇤ (here we use ⇤ = 0.8)
and can be reinfected at subsequent time steps, and they remain infectious
with probability 1�⇤.

The imprecision function. The betweenness centrality, CB(i), of a node i is defined
as follows: Consider two nodes s and t and the set ⇧st of all possible shortest
paths between these two nodes. If the subset of this set that contains the paths
that pass through the node i is denoted by ⇧st (i), then the betweenness centrality
of this node is given by

CB(i)=
X

s�=t

⇧st (i)
⇧st

where the sum runs over all nodes s and t in the network.
The imprecision function ⇥(p) quantifies the difference between the average

spreading between the pN nodes (0< p< 1) with highest kS, k or CB and the
average spreading of the pN most efficient spreaders (N is the number of nodes
in the network). Thus, it tests the merit of using k shell, k and CB to identify the
most efficient spreaders. For a given � value and a given fraction of the system
p we first identify the set of the Np most efficient spreaders as measured by Mi
(we designate this set by ⌃eff). Similarly, we identify the Np individuals with the
highest k-shell index (⌃kS ). We define the imprecision of k-shell identification as
⇥kS (p)⇥ 1�MkS/Meff, where MkS and Meff are the average infected percentages
averaged over the ⌃kS and ⌃eff groups of nodes respectively. ⇥k and ⇥CB are
defined similarly to ⇥kS .
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