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Destruction perfected
Pinpointing the nodes whose removal most effectively disrupts a network has become a lot easier with the development of 
an efficient algorithm. Potential applications might include cybersecurity and disease control. See Letter p.65
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An enduring truth of network science is 
that the removal of a few highly con-
nected nodes, or hubs, can break up 

a complex network into many disconnected 
components1. Sometimes, a fragmented and 
inactive network is more desirable than a 
functioning one. Consider, for example, the 
need to eliminate bacteria by disrupting their 
molecular network or by vaccinating a few 
individuals in a population to break up the 
contact network through which a pathogen 
spreads. In a quest to find the silver bullets 
that can effectively dismantle large networks, 
Morone and Makse2 (page 65 of this issue) 
have developed an algorithm that achieves this 
by identifying sets of network nodes known  
as influencers. 

It is not certain whether targeting and 
removing network hubs — defined as the 
nodes with the largest number of links — can 
inflict maximum disruption on a network. It 
may be more effective to eliminate a combi-
nation of hubs and central, but less-well-con-
nected, nodes. The removal of hubs is usually 
preferred because they are easy to locate, 
whereas identifying the optimal set of nodes for 

which deletion would cause maximum damage  
is a non-deterministic polynomial-time hard 

(NP-hard) problem3. This means that it is com-
putationally feasible only for small networks. 
Morone and Makse attack the problem of 
network disruption by mapping the integrity 
of a tree-like random network into optimal 
percolation4,5 theory. From this, they derive 
an energy function with a minimum that cor-
responds to the set of nodes that need to be 
eliminated, to yield a network whose largest  
cluster is as small as possible. Although  
identifying this minimum is still an NP-
hard problem, the authors were inspired by 
the energy function’s shape to find a simple  
algorithm that offers an approximate solution. 

To do this, Morone and Makse introduce 
the concept of collective influence, which is 
the product of the node’s reduced degree (the 
number of its links minus one) and the sum 
of the reduced degrees of the nodes that are a 
certain number of steps away from it (Fig. 1). 
Collective influence describes how many 
other nodes can be reached from a given node, 
assuming that nodes of high collective influ-
ence have a crucial role in the network. The 
collective-influence-based algorithm then 
sequentially removes nodes, starting with 
those that have the highest collective influence 

(known as influencers) and recalculating the 
collective influence of the rest following each 
operation. The authors show that, for large 
networks, removing the set of influencers 
identified by this algorithm is more effective 
in fragmenting a network than removing 
the hubs, or than removing nodes that are 
identified through other algorithms, such as 
PageRank6 or closeness centrality7. The set of 
influencers identified by the authors contains 
many nodes with few connections. This high-
lights the fact that the importance of a node in 
ensuring a network’s integrity is determined 
not only by the number of direct links it has to 
other nodes, but also by which other nodes it 
is connected to.

The collective-influence algorithm is 
remarkable for its computational complexity 
because it requires only N2logN computa-
tions to dismantle a network that contains N 
number of nodes. Its complexity is reduced to 
NlogN if, instead of individual nodes, a fixed 
fraction of the total is removed at each step of 
the computation. The authors compare their 
method to the predictions of spin-glass theory, 
which was originally developed to describe 
the properties of disordered magnets and has 
found a range of applications in network analy-
sis. They conclude that the nodes prioritized 

Figure 1 | Optimal network demolition.  Morone and Makse2 introduce an 
algorithm that allows them to efficiently dismantle networks. The authors 
define the collective influence of a network node as the product of its reduced 
degree (the number of its nearest connections, k, minus one), and the total 
reduced degree of all nodes at distance d from it (defined as the number of 
steps from it). a, In this network, for d = 2, the red node with k = 4 has the 
highest collective influence, because the total reduced degree of the nodes at 
d = 2 from it (green and yellow circles) is 21. This yields a collective influence 
of  3 × 21 = 63. The most connected hub, with k = 6 (yellow circle), has a 

collective influence of  60. b, Removing the 6 nodes with the highest k (white 
circles) causes considerable damage to the network, but leaves a sub-network 
that contains 12 nodes unperturbed. c, By contrast, the algorithm developed 
by the authors allows them to identify a set of nodes (known as influencers) 
according to their collective influence. Using this, the removal of four 
influencer nodes (white circles) results in a fragmented network in which  
the largest connected cluster that remains has only ten nodes. This illustrates 
the algorithm’s effectiveness over conventional methods for prioritizing 
network destruction.
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by the collective-influence algorithm represent  
an approximate solution, which has a size 
close to that of the theoretical optimal solu-
tion. On the basis of spin-glass theory, we 
expect that the collective-influence solution 
has only a small overlap with the optimal solu-
tion, and hence must be treated with caution. 
However, the influencers found by collective 
influence are more effective in destroying a 
network than nodes selected by other meth-
ods. So even though the collective-influence  
method is approximate, it is faster and  
more efficient.

As with any new algorithm, open questions 
abound. The collective-influence algorithm 
has only one free parameter — the distance, 
expressed in the number of steps, from any 
given node. At zero distance, the collective 
influence of a node is equal to the square of its 
reduced degree, and so in this case the algo-
rithm simply removes the hubs. To improve 
the algorithm’s accuracy, one must choose a 
non-zero distance — but one that is not too 
large, because for large distances the bounda-
ries of the network are reached, diminishing a 
node’s collective influence (the collective influ-
ence approaches zero). Although Morone and 
Makse find that any distance greater than one 
works, a firm criterion for choosing an optimal 
value is lacking and would be desirable. Finally, 
because the authors designed their algorithm 
to work on networks that are locally tree-like, 
further work and quantitative evidence are 
needed on its expected accuracy for networks 
with loops, such as most social networks.

The collective-influence algorithm, just like 
similar algorithms, removes a node together 
with all its links. However, for many systems, 
node removal is too drastic an intervention. 
Softer touches, such as removing or rewir-
ing specific links, are more tractable and 
desirable. For example, these approaches are 
relevant for networks in biological cells, in 
which many diseases are caused by mutations 
that result in deletion of links rather than the 
complete removal of nodes8. Understanding 
such ‘edgetic’ effects, and designing algorithms 
that can detect the minimum number of links 
to delete so as to achieve a given outcome, 
remains a challenge for future work. 

The identification of optimal influencers,  
at either the node or the link level, is the first 
step towards building networks that would 
be robust against both attacks and failures. 
Mastering the design principles of such 
super-robust networks could have profound 
implications for anything from cybersecurity 
to the design of an attack- and error-tolerant 
power grid, and may even allow us to develop 
drugs that can rescue a cellular network from 
its diseased state with minimal side effects. ■
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A smart insulin patch
A microneedle-containing patch that is designed to sense elevated blood glucose 
levels and to respond by releasing insulin could offer people with diabetes a  
less-painful and more-reliable way to manage their condition.

O M I D  V E I S E H  &  R O B E R T  L A N G E R

Diabetes is widely recognized as one of 
the biggest medical challenges of the 
twenty-first century, afflicting more 

than 280 million people globally1. People with 
diabetes must tirelessly self-monitor their 
blood glucose levels and inject the correct 
dose of the glucose-lowering hormone insu-
lin to keep their blood glucose levels in the 

normal range2. This treatment regime involves  
challenges — it requires painful and inconven-
ient subcutaneous injections, is imprecise, and 
can cause serious problems if insulin dosage 
is not closely tuned to the patient’s immediate 
physiological needs3. Reporting in Proceedings 
of the National Academy of Sciences, Yu et al.4 
describe a glucose-responsive microneedle 
patch that can be painlessly applied to the skin 
and that releases insulin as blood glucose levels 
increase.  

‘Smart’ glucose-responsive insulin-based 
therapies involve the automatic release of insu-
lin in response to increases in blood glucose 
concentration. Smart therapies can improve 
disease control and limit the potential for 
excessively low blood glucose levels, which is 
a potentially deadly effect of excessive insulin 
dosing3. To mimic the physiological needs 
of a patient accurately, such therapies must 
respond rapidly to elevated glucose levels, and 
must release insulin with kinetics that closely 
mirror those of a healthy pancreas. 

One type of smart therapy makes use of 
microcomputer-controlled insulin-delivery 
systems. These systems couple implant-
able continuous glucose monitors (CGMs) 
to automated pumps, and administer insulin 
through a subcutaneously inserted cannula 
tube. They are currently being evaluated in 
the clinic, and have shown promise in helping 
patients to achieve their target blood glucose 
level more regularly5,6. However, the sensors 
of current CGMs must be calibrated many 
times a day using hand-held glucometers. 
They produce blood-glucose measurements 
that lag behind true blood glucose levels by 
5–15 minutes, hampering efforts to maintain a 
healthy range3. They are also the size of pagers,  
and the implanted sensors and cannula 
increase the risk of infection and require fre-
quent maintenance and replacement to combat 
the body’s immune response, increasing incon-
venience, discomfort and cost to the patient3.

The microneedle-patch device developed 
by Yu and colleagues is a 6-millimetre-square 

Figure 1 | A microneedle patch to monitor 
glucose and release insulin.  Yu et al.4 have 
developed a smart insulin-releasing patch made 
of 121 nanoparticle-containing microneedles. 
The patch painlessly penetrates the interstitial 
fluid between subcutaneous skin cells. The 
nanoparticles in each needle contain insulin and 
the glucose-sensing enzyme glucose oxidase, 
which converts glucose to gluconic acid. These 
molecules are surrounded by a hypoxia-responsive 
polymer. Increases in glucose oxidase activity in 
response to glucose elevation produce a low-oxygen  
environment in the nanoparticles, which is sensed 
by the hypoxia-responsive polymer, triggering 
disassembly of the nanoparticles and the release 
of insulin.
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Influence maximization in complex networks
through optimal percolation
Flaviano Morone1 & Hernán A. Makse1

The whole frame of interconnections in complex networks hinges
on a specific set of structural nodes, much smaller than the total
size, which, if activated, would cause the spread of information to
the whole network1, or, if immunized, would prevent the diffusion
of a large scale epidemic2,3. Localizing this optimal, that is, min-
imal, set of structural nodes, called influencers, is one of the most
important problems in network science4,5. Despite the vast use of
heuristic strategies to identify influential spreaders6–14, the prob-
lem remains unsolved. Here we map the problem onto optimal
percolation in random networks to identify the minimal set of
influencers, which arises by minimizing the energy of a many-body
system, where the form of the interactions is fixed by the non-
backtracking matrix15 of the network. Big data analyses reveal that
the set of optimal influencers is much smaller than the one pre-
dicted by previous heuristic centralities. Remarkably, a large num-
ber of previously neglected weakly connected nodes emerges
among the optimal influencers. These are topologically tagged as
low-degree nodes surrounded by hierarchical coronas of hubs, and
are uncovered only through the optimal collective interplay of all
the influencers in the network. The present theoretical framework
may hold a larger degree of universality, being applicable to other
hard optimization problems exhibiting a continuous transition
from a known phase16.

The optimal influence problem was initially introduced in the con-
text of viral marketing1, and its solution was shown to be NP-hard4 for
a generic class of linear threshold models of information spreading17,18.
Indeed, finding the optimal set of influencers is a many-body problem
in which the topological interactions between them play a crucial
role13,14. On the other hand, there has been an abundant production
of heuristic rankings to identify influential nodes and ‘superspreaders’
in networks6–12,19. The main problem is that heuristic methods do not
optimize a global function of influence. As a consequence, there is no
guarantee of their performance.

Here we address the problem of quantifying nodes’ influence by
finding the optimal (that is, minimal) set of structural influencers.
After defining a unified mathematical framework for both immuniza-
tion and spreading, we provide its optimal solution in random net-
works by mapping the problem onto optimal percolation. In addition,
we present CI (Collective Influence), a scalable algorithm to solve
the optimization problem in large-scale real data sets. The thorough
comparison with competing methods (Supplementary Information
section I20) ultimately establishes the better performance of our algo-
rithm. By taking into account collective influence effects, our optim-
ization theory identifies a new class of strategic influencers, called
‘weak nodes’, which outrank the hubs in the network. Thus, the top
influencers are highly counterintuitive: low-degree nodes play a major
broker role in the network, and despite being weakly connected, can be
powerful influencers.

The problem of finding the minimal set of activated nodes17,18 to
spread information to the whole network4 or to optimally immunize a
network against epidemics11 can be exactly mapped onto optimal per-
colation (see Supplementary Information section IIB). This mapping

provides the mathematical support to the intuitive relation between
influence and the concept of cohesion of a network: the most influ-
ential nodes are the ones forming the minimal set that guarantees a
global connection of the network5,9,10. We call this minimal set the
‘optimal influencers’ of the network. At a general level, the optimal
influence problem can be stated as follows: find the minimal set of
nodes which, if removed, would break down the network into many
disconnected pieces. The natural measure of influence is, therefore, the
size of the largest (giant) connected component as the influencers are
removed from the network.

We consider a network composed of N nodes tied with M links with
an arbitrary-degree distribution. Let us suppose we remove a certain
fraction q of the total number of nodes. It is well known from percola-
tion theory21 that, if we choose these nodes randomly, the network
undergoes a structural collapse at a certain critical fraction where
the probability of existence of the giant connected component
vanishes, G 5 0. The optimal influence problem corresponds to find-
ing the minimum fraction qc of influencers to fragment the network:
qc 5 min{q g [0, 1]: G(q) 5 0}.

Let the vector n 5 (n1,…, nN) represent which node is removed
(ni 5 0, influencer) or left (ni 5 1, the rest) in the network
(q~1{1

�
N
P

i ni), and consider a link from i to j (i R j). The order
parameter of the influence problem is the probability that i belongs
to the giant component in a modified network where j is absent, niRj

(refs 22, 23). Clearly, in the absence of a giant component we find
{niRj 5 0} for all i R j. The stability of the solution {niRj 5 0} is
controlled by the largest eigenvalue l(n; q) of the linear operator M̂,

defined on the 2M 3 2M directed edges asMk?‘,i?j:
Lni?j

Lnk?‘

���
fni?j~0g

.

We find for locally tree-like random graphs (see Fig. 1a and
Supplementary Information section II):

Mk?‘,i?j ~ niBk?‘,i?j ð1Þ
where Bk?‘,i?j is the non-backtracking matrix of the network15,24.
The matrix Bk?‘,i?j has non-zero entries only when (k R ,, i R j)
form a pair of consecutive non-backtracking directed edges, that is,
(k R ,, , R j) with k ? j. In this case Bk?‘,‘?j ~ 1 (equation (13) in

Supplementary Information). Powers of the matrix B̂ count the num-
ber of non-backtracking walks of a given length in the network
(Fig. 1b)24, much in the same way as powers of the adjacency matrix
count the number of paths5. Operator B̂ has recently received a lot of
attention thanks to its high performance in the problem of community
detection25,26. We show its topological power in the problem of
optimal percolation.

Stability of the solution {niRj 5 0} requires l(n; q) # 1. The optimal
influence problem for a given q ($qc) can be rephrased as finding the
optimal configuration n that minimizes the largest eigenvalue l(n; q)
(Fig. 1c). The optimal set n� of Nqc influencers is obtained when the
minimum of the largest eigenvalue reaches the critical threshold:

l( �; qc)~1 ð2Þ
1Levich Institute and Physics Department, City College of New York, New York, New York 10031, USA.

G2015 Macmillan Publishers Limited. All rights reserved

6 A U G U S T 2 0 1 5 | V O L 5 2 4 | N A T U R E | 6 5

www.nature.com/doifinder/10.1038/nature14604


The formal mathematical mapping of the optimal influence problem
to the minimization of the largest eigenvalue of the modified non-
backtracking matrix for random networks, equation (2), represents
our first main result.

An example of a non-optimized solution corresponds to choosing
ni at random and decoupled from the non-backtracking matrix23,27

(random percolation21, Supplementary Information section IID).
In the optimized case, we seek to derandomize the selection of
the set ni 5 0 and optimally choose them to find the best configura-
tion n� with the lowest qc according to equation (2). The eigen-
value l(n) (from now on we omit q in l(n; q) ; l(n), which is
always kept fixed) determines the growth rate of an arbitrary
vector w0 with 2M entries after , iterations of the matrix

M̂ : j ‘( )j~ ‘j ‘h i
1
2~j M̂‘

0j~
D

0

���(M̂‘){M̂‘
��� 0

E1
2
*e‘ log l(n):

The largest eigenvalue is then calculated by the power method:

l( )~ lim
‘??

j ‘( )j
j 0j

� �1=‘

ð3Þ

Equation (3) is the starting point of an (infinite) perturbation series
that provides the exact solution to the many-body influence problem in
random networks and therefore contains all physical effects, including
the collective influence. In practice, we minimize the cost energy function
of influence j ‘( )j in equation (3) for a finite ,. The solution rapidly
converges to the exact value as , R ‘, the faster the larger the spectral
gap. We find for , $ 1, to leading order in 1/N (Supplementary
Information section IIE):

j ‘( )j2~
XN

i~1

(ki{1)
X

j [ LBall(i, 2‘{1)

 Y
k [P2‘{1(i, j)

nk

!
(kj{1) ð4Þ

where Ball(i, ,) is the set of nodes inside a ball of radius , (defined as the
shortest path) around node i, hBall(i, ,) is the frontier of the ball,P‘(i, j)
is the shortest path of length , connecting i and j (Fig. 1d), and ki is the
degree of node i.

The first collective optimization in equation (4) is , 5 1. We find
1ð Þj j2~

PN
i,j~1 Aij(ki{1)(kj{1)ninj, where Aij is the adjacency

matrix (equation (39) in Supplementary Information). This term is
interpreted as the energy of an antiferromagnetic Ising model with
random bonds in a random external field at fixed magnetization,
which is an example of a pair-wise NP-complete spin-glass whose
solution is found in Supplementary Information section III with the
cavity method28 (Extended Data Fig. 2).

For , $ 2, the problem can be mapped exactly to a statistical
mechanical system with many-body interactions which can be recast
in terms of a diagrammatic expansion, equations (41)–(49) in Supple-
mentary Information. For example, j 2( )j2 leads to 4-body interactions
(equation (45) in Supplementary Information), and, in general, the
energy cost j ‘( )j2 contains 2,-body interactions. As soon as , $ 2,
the cavity method becomes much more complicated to implement and
we use another suitable method, called extremal optimization (EO)29

(Supplementary Information section IV). This method estimates the true
optimal value of the threshold by finite-size scaling following extrapola-
tion to , R ‘ (Extended Data Figs 3, 4). However, EO is not scalable to
find the optimal configuration in large networks. Therefore, we develop
an adaptive method, which performs excellently in practice, preserves
the features of EO, and is highly scalable to present-day big data.

The idea is to remove the nodes causing the biggest drop in the
energy function, equation (4). First, we define a ball of radius , around
every node (Fig. 1d). Then, we consider the nodes belonging to the
frontier hBall(i, ,) and assign to node i the collective influence (CI)
strength at level , following equation (4):

CI‘(i)~(ki{1)
X

j [ LBall i, ‘ð Þ
(kj{1) ð5Þ

We notice that, while equation (4) is valid only for odd radii of the ball,
CI,(i) is defined also for even radii. This generalization is possible by
considering an energy function for even radii analogous to equation
(4), as explained in Supplementary Information section IIG. The case
of one-body interaction with zero radius , 5 0 (equation (59) in
Supplementary Information) leads to the high-degree (HD) ranking
(equation (62) in Supplementary Information)10.

The collective influence, equation (5), is our second and most
important result since it is the basis for the highly scalable and opti-
mized CI algorithm which follows. In the beginning, all the nodes are
present: ni 5 1 for all i. Then, we remove node i� with highest CI, and
set ni� 5 0. The degree of each neighbour of i� is decreased by one, and
the procedure is repeated to find the new top CI node to remove. The
algorithm is terminated when the giant component is zero (see
Supplementary Information section V for implementation, and
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Figure 1 | The non-backtracking (NB) matrix and weak nodes. a, The largest
eigenvalue l of M̂ exemplified on a simple network. The optimal strategy
for immunization and spreading minimizes l by removing the minimum
number of nodes (optimal influencers) that destroys all the loops. Left panel,
the action of the matrix M̂ is on the directed edges of the network. The entry
M2?3,3?5~n3B2?3,3?5~n3 encodes the occupancy (n3 5 1) or vacancy
(n3 5 0) of node 3. In this particular case, the largest eigenvalue is l 5 1.
Centre panel, non-optimal removal of a leaf, n4 5 0, which does not decrease l.
Right panel, optimal removal of a loop, n3 5 0, which decreases l to zero.
b, A NB walk is a random walk that is not allowed to return back along the
edge that it just traversed. We show a NB open walk (, 5 3), a NB closed
walk with a tail (, 5 4), and a NB closed walk with no tails (, 5 5). The NB
walks are the building blocks of the diagrammatic expansion to calculate l.
c, Representation of the global minimum over n of the largest eigenvalue l of
M̂ versus q. When q $ qc, the minimum is at l 5 0. Then, G 5 0 is stable
(still, non-optimal configurations exist with l . 1 for which G . 0). When
q , qc, the minimum of the largest eigenvalue is always l . 1, the solution
G 5 0 is unstable, and then G . 0. At the optimal percolation transition, the
minimum is at n� with l(n�, qc) 5 1. For q 5 0, we find l 5 k 2 1 (k 5 Æk2æ/Ækæ,
where k is the node degree) which is the largest eigenvalue of B̂ for random
networks25 with all nodes present (ni 5 1). When l 5 1, the giant component is
reduced to a tree plus one single loop (unicyclic graph), which is suddenly
destroyed at the transition qc to become a tree, causing the abrupt fall of l
to zero. d, Ball(i, ,) of radius , around node i is the set of nodes at distance ,
from i, and hBall is the set of nodes on the boundary. The shortest path from i
to j is shown in red. e, Example of a weak node: a node with a small number of
connections surrounded by hierarchical coronas of hubs at different , levels.
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Supplementary Information section VA for minimizing G(q) ? 0). By
increasing the radius , of the ball we obtain better and better approx-
imations of the optimal exact solution as , R ‘ (for finite networks, ,
does not exceed the network diameter).

The collective influence CI, for , $ 1 has a rich topological content,
and consequently tells us more about the role played by nodes in the
network than the non-interacting high-degree hub-removal strategy at
, 5 0, CI0. The augmented information comes from the sum in the
right hand side of equation (5), which is absent in the naive high-
degree rank. This sum contains the contribution of the nodes living
on the surface of the ball surrounding the central vertex i, each node
weighted by the factor kj 2 1. This means that a node placed at the
centre of a corona irradiating many links—the structure hierarchically
emerging at different , levels as seen in Fig. 1e—can have a very large
collective influence, even if it has a moderate or low degree. Such ‘weak
nodes’ can outrank nodes with larger degree that occupy mediocre
peripheral locations in the network. The commonly used word ‘weak’
in this context sounds particularly paradoxical. It is, indeed, usually
used as a synonym for a low-degree node with an additional bridging
property, which has resisted a quantitative formulation. We provide
this definition through equation (5), according to which weak nodes
are, de facto, quite strong. Paraphrasing Granovetter’s conundrum30,
equation (5) quantifies the ‘‘strength of weak nodes’’.

The CI-algorithm scales as *O(N log N) by removing a finite frac-
tion of nodes at each step (Supplementary Information section VB).
This high scalability allows us to find top influencers in current big-data
social media and the minimal set of people to immunize in large-scale
populations at the country level. The applications are investigated next.

Figure 2a shows the optimal threshold qc for a random Erdös–Rényi
(ER) network5 (marked by the vertical line) obtained by extrapolating
the EO solution to N R ‘ and , R ‘ (Supplementary Information
section IV). In the same figure we compare the optimal threshold against
the heuristic centrality measures: high-degree (HD)9, high-degree

adaptive (HDA), PageRank (PR)7, closeness centrality (CC)6, eigenvec-
tor centrality (EC)6, and k-core12 (see Supplementary Information sec-
tion I for definitions). Supplementary Information sections VI and VII
show the comparison with the remaining heuristics6,11 and the Belief
Propagation method of ref. 14, respectively, which have worse compu-
tational complexity (and optimality), and cannot be applied to the net-
work sizes used here. Remarkably, at the optimal value qc predicted by
our theory, the best among the heuristic methods (HDA, PR and HD)
still predict a giant component ,50–60% of the whole original network.
Furthermore, the influencer threshold predicted by CI approximates
very well the optimal one, and, notably, CI outperforms the other strat-
egies. Figure 2b compares CI in scale-free (SF) networks5 against the best
heuristic methods, that is, HDA and HD. In all cases, CI produces a
smaller threshold and a smaller giant component (Fig. 2c).

As an example of an information spreading network, we consider
the web of Twitter users (Supplementary Information section VIII19).
Figure 3a shows the giant component of Twitter when a fraction q of its
influencers is removed following CI. It is surprising that a lot of Twitter
users with a large number of contacts have a mild influence on the
network. This is witnessed by the fact that, when CI (at , 5 5) predicts a
zero giant component (and so it exhausts the number of optimal influ-
encers), the scalable heuristic ranks (HD, HDA, PR and k-core) still
give a substantial giant component of the order of 30–70% of the entire
network. These heuristics also, inevitably, find a remarkably large num-
ber of (fake) influencers, which is at least 50% larger than that predicted
by CI (Fig. 3b and Supplementary Information section VIII). One cause
for the poor performance of the high-degree-based ranks is that most of
the hubs are clustered, which gives a mediocre importance to their
contacts. As a consequence, hubs are outranked by nodes with lower
degree surrounded by coronas of hubs (shown in detail in Fig. 3c), that
is, the weak nodes predicted by the theory (Fig. 1e).

Finally, we simulate an immunization scheme on a personal contact
network built from the phone calls performed by 14 million people in
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Figure 2 | Exact optimal solution and performance of CI in synthetic
networks. a, G(q) in an ER network (N 5 2 3 105, Ækæ 5 3.5, error bars are
s.e.m. over 20 realizations). We show the true optimal solution found with EO
(‘3’ symbol), and also using CI, HDA, PR, HD, CC, EC and k-core methods.
The other methods are not scalable and perform worse than HDA and are
treated in Supplementary Information sections VI and VII (Extended Data
Figs 8, 9). CI is close to the optimal qopt

c ~ 0:192ð9Þ obtained with EO in
Supplementary Information section IV. Note that EO can estimate the
extrapolated optimal value of qc, but it cannot provide the optimal

configuration for large systems. Inset, qc (obtained at the peak of the second-
largest cluster) for the three best methods versus Ækæ. b, G(q) for a SF network
with degree exponent c 5 3, maximum degree kmax 5 103, minimum degree
kmin 5 2 and N 5 2 3 105 (error bars are s.e.m. over 20 realizations). Inset, qc

versus c. The continuous blue line is the HD analytical result computed in
Supplementary Information section IIG (Extended Data Fig. 1b). c, Example of
SF network with c 5 3 after the removal of 15% of nodes, using the three
methods HD, HDA and CI. CI produces a much reduced giant component G
(red nodes).
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Mexico (Supplementary Information section IX). Figure 3d shows that
our method saves a large number of vaccines or, equivalently, finds the
smallest possible set of people to quarantine; our method therefore also
outranks the scalable heuristics in large real networks. Thus, while the
mapping of the influencer identification problem onto optimal per-
colation is strictly valid for locally tree-like random networks, our
results may apply also to real loopy networks, provided the density
of loops is not excessively large.

Our solution to the optimal influence problem shows its importance
in that it helps to unveil hitherto hidden relations between people, as
witnessed by the weak-node effect. This, in turn, is the by-product of a
broader notion of influence, lifted from the individual non-interacting
point of view6–12,19,20 to the collective sphere: influence is an emergent
property of collectivity, and top influencers arise from the optimiza-
tion of the complex interactions they stipulate.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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for this system size). b, Percentage of fake influencers or false positives
(PFI, equation (120) in Supplementary Information) in Twitter as a function of
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algorithm in comparison with CI. Below qCI

c , PFI reaches as much as ,40%,
indicating the failure of HD in optimally finding the top influencers. Indeed, to
obtain G 5 0, HD has to remove a much larger number of fake influencers,
which at qHD

c reaches PFI < 48%. c, An example of the many weak nodes found
in Twitter. These crucial influencers were missed by all heuristic strategies.
d, G(q) for a social network of 1.4 3 107 mobile phone users in Mexico
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a million fewer people than the best heuristic strategy (HDA), saving ,35%
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Extended Data Figure 1 | High-degree (HD) threshold. a, HD influence
threshold qc as a function of the degree distribution exponent c of scale-free
networks in the ensemble with kmax 5 mN1/(c21) and N R ‘. The curves refer
to different values of the minimum degree m: 1 (red), 2 (blue), 3 (black).
The fragility of SF networks (small qc) is notable for m 5 1 (the case calculated
in ref. 10). In this case (m 5 1), the network contains many leaves, and reduces
to a star at c 5 2, which is trivially destroyed by removing the only single
hub, explaining the general fragility in this case. Furthermore, in this same case,
the network becomes a collection of dimers with k 5 1 when c R ‘, which is
still trivially fragile. This also explains why qc R 0 for c $ 4. Therefore, the
fragility in the case m 5 1 has its roots in these two limiting trivial cases.
Removing the leaves (m 5 2) results in a 2-core, which is already more robust.

For the 3-core m 5 3, qc < 0.4–0.5 provides a quite robust network, and has the
expected asymptotic limit to a non-zero qc of a random regular graph with
k 5 3 as c R ‘, qc R (k 2 2)/(k 2 1) 5 0.5. Thus, SF networks become
robust in these more realistic cases, and the search for other attack strategies
becomes even more important. b, HD influence threshold qc as a function of the
degree distribution exponent of scale-free networks with minimum degree
m 5 2 in the ensemble where kmax is fixed and does not scale with N. The
curves refer to different values of the cut-off kmax: 102 (red), 103 (green), 105

(blue), 108 (magenta), and kmax 5 ‘ (black), and show that for a typical kmax

degree of 103, for instance in social networks, the network is fairly robust with
qc < 0.2 for all c. The curve with m 5 2 and kmax 5 103 is replotted in the inset
of Fig. 2b.
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Extended Data Figure 2 | Replica Symmetry (RS) estimation of the
maximum eigenvalue. Main panel, the eigenvalue lRS

1 (q), equation (92) in
Supplementary Information for the two-body interaction , 5 1, obtained by
minimizing the energy function E(s) with the RS cavity method. The curve was
computed on an ER graph of N 5 10,000 nodes and average degree Ækæ 5 3.5

and then averaged over 40 realizations of the network (error bars are s.e.m.).
Inset, comparison between the RS cavity method and EO (extremal
optimization) for an ER graph of Ækæ 5 3.5 and N 5 128. The curves are
averaged over 200 realizations (error bars are s.e.m.).
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Extended Data Figure 3 | EO estimation of the maximum eigenvalue.
Eigenvalue l(q) obtained by minimizing the energy function E(n) with tEO
(t-extremal optimization), plotted as a function of the fraction of removed
nodes q. The panels are for different orders of the interactions. The curves in

each panel refer to different sizes of ER networks with average connectivity
Ækæ 5 3.5. Each curve is an average over 200 instances (error bars are s.e.m.).
The value qc where l(qc) 5 1 is the threshold for a particular N and many-body
interaction.
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Extended Data Figure 4 | Estimation of optimal threshold qopt
c with EO.

a, Critical threshold qc as a function of the system size N, obtained with EO from
Extended Data Fig. 3, of ER networks with Ækæ 5 3.5 and varying size. The
curves refer to different orders of the many-body interactions. The data show a
linear behaviour as a function of N22/3, typical of spin glasses, for each many-

body interaction r. The extrapolated value q?c (�) is obtained at the y intercept.
b, Thermodynamic critical threshold q?c (�) as a function of the order of the
interactions r from a. The data scale linearly with 1/r. From the y intercept
of the linear fit we obtain the thermodynamic limit of the infinite-body
optimal value qopt

c ~q?c (�??)~0:192(9).
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Extended Data Figure 5 | Comparison of the CI algorithm for different
radii , of the Ball(,). We use , 5 1, 2, 3, 4, 5, on a ER graph with average degree
Ækæ 5 3.5 and N 5 105 (the average is taken over 20 realizations of the network,
error bars are s.e.m.). For , 5 3 the performance is already practically
indistinguishable from , 5 4, 5. The stability analysis we developed to
minimize qc is strictly valid only when G 5 0, since the largest eigenvalue of the

modified NB matrix controls the stability of the solution G 5 0, and not the
stability of the solution G . 0. In the region where G . 0 we use a simple
and fast procedure to minimize G explained in Supplementary Information
section VA. This explains why there is a small dependence on having a slightly
larger G for larger ,, when G . 0 in the region q < 0.15.
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Extended Data Figure 6 | Illustration of the algorithm used to minimize
G(q) for q , qc. Starting from the completely fragmented network at q 5 qc,
the Nqc influencers are reinserted with their original degree and connected
to their original neighbours with the following criterion: each node is assigned
and index c(i) given by the number of clusters it would join if it were reinserted

in the network. For example, the red node has c(red) 5 2, while the blue one has
c(blue) 5 3. The node with the smallest c(i) is reinserted in the network: in this
case the red node. Then the c(i)s are recalculated and the new node with the
smallest c(i) is found and reinserted. These steps are repeated until all the
removed nodes are reinserted in the network.
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Extended Data Figure 7 | Test of the decimation fraction. Giant component G as a function of the fraction of removed nodes q using CI, for an ER network of
N 5 105 nodes and average degree Ækæ 5 3.5. The profiles of the curves are drawn for different percentages of nodes fixed at each step of the decimation algorithm.
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Extended Data Figure 8 | Comparison of the performance of CI, BC and EGP in destroying G. We also include HD, HDA, EC, CC, k-core and PR. We use a
scale-free (SF) network with degree exponent c 5 2.5, average degree Ækæ 5 4.68, and N 5 104. We use the same parameters as in ref. 11.
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Extended Data Figure 9 | Comparison with BP for a network
immunization. a, Fraction of infected nodes f as a function of the fraction of
immunized nodes q in the susceptible-infected-removed (SIR) model from the
BP solution. We use an ER random graph of N 5 200 nodes and average degree
Ækæ 5 3.5. The fraction of initially infected nodes is p 5 0.1 and the inverse
temperature b 5 3.0. The profiles are drawn for different values of the
transmission probability w: 0.4 (red curve), 0.5 (green), 0.6 (blue), 0.7
(magenta). Also shown are the results of the fixed density BP algorithm
(open circles). b, Chemical potential m as a function of the immunized nodes
q from BP. We use an ER random graph of N 5 200 nodes and average degree
Ækæ 5 3.5. The fraction of the initially infected nodes is p 5 0.1 and the

inverse temperature b 5 3.0. The profiles are drawn for different values of
the transmission probability w: 0.4 (red curve), 0.5 (green), 0.6 (blue), 0.7
(magenta). Also shown are the results of the fixed density BP algorithm
(open circles) for the region where the chemical potential is non-convex.
c, Comparison between the giant components obtained with CI, HDA, HD and
BP. We use an ER network of N 5 103 and Ækæ 5 3.5. We also show the solution
of CI from Fig. 2a for N 5 105. We find in order of performance: CI, HDA,
BP and HD. (The average is taken over 20 realizations of the network, error bars
are s.e.m.) d, Comparison between the giant components obtained with CI,
HDA, HD and BPD. We use a SF network with degree exponent c 5 3.0,
minimum degree kmin 5 2, and N 5 104 nodes.
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Extended Data Figure 10 | Fraction of infected nodes f(q) as a function of
the fraction of immunized nodes q in SIR from BP. We use the following
parameters: initial fraction of infected people p 5 0.1, and transmission
probability w 5 0.5. We use an ER network of N 5 103 nodes and Ækæ 5 3.5.

We compare CI, HDA and BP. All strategies give similar performance, owing
to the large value of the initial infection p, which washes out the optimization
performed by any sensible strategy, in agreement with the results shown in
figure 12a of ref. 14.
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